Indexed vs. Unindexed Searching:

Distributed Searching e Email Filtering
Security Classifications e Forensics

Both indexed and
unindexed searching have
their place in the enterprise.
Indexed text retrieval is
typically more efficient for
uses such as general
information retrieval,
distributed searching and
security classification
systems. But unindexed
searching too has its place—
in outgoing email filtering,
searching of live data sources
like RSS news feeds, and
sometimes in forensics. This
article will attempt to explain
which search technique to use
when, and why.

The classification filter relies on what dtSearch® calls a
“SearchFilter object” for use while indexing. A search
filter object is a mechanism to specify a subset of the
documents in a collection for purposes of limiting a
query to that subset. Conceptually, the SearchFilter
object is similar to a list of document identifiers.

Overview: Indexed Text
Retrieval

Indexing the inevitable
millions of documents that any
sizeable organization generates
on shared file servers is the
fastest way to facilitate data
retrieval. An index will

typically store each unique
word in a document collection
and its location within each
document. Indexing also works
with non-document data, e.g.
for forensics search purposes.
After indexing, full-text
search speed, even across

A dog digging in its own backyard to find
bones that the dog remembers burying is
performing an indexed search.

A dog digging in a neighboring backyard in
the hopes of finding some of the
neighboring dog’s buried bones is

performing an unindexed search.

Reprinted with permission of PC Al Online Magazine V. 18 #3
For more information about PC Al Online Magazine, visit www.pcai.com

This discussion uses
dtSearch-based examples
for illustrating distributed
searching using XML as an
interchange medium. This
is a different use of XML
than as a database storage
format for holding Web-
based and other fielded
data ... The distributed
search can then combine
the streams of XML data,
presenting a single,
unified and flexible view.

millions of documents, is
typically less than a second.
While indexing a very large
collection of documents for the
first time may be time
consuming, subsequent updates
of the index are usually much
faster. dtSearch, for example,
simply checks the file
modification dates of all indexed
files, and only reindexes those
files that have been added,
deleted or changed since the last
index update. (While the text
retrieval terminology here relies
on the dtSearch product line, the
concepts in this article are
generally applicable.)

In addition to enabling
precision boolean searching, an
index can also store such
information as word positions,
enabling word or phrase
proximity searching. An index
can also hold information about
word frequency and distribution,
enabling computation of natural
language relevancy rankings
across a document collection. If
the company name appears in
two million documents, it would

get a low relevancy ranking. If
the latest marketing
terminology appears in only
four documents, it would get a
much higher relevancy rank. In
that way, PR could, for
example, enter a whole
paragraph of proposed text for
a press release as a natural
language search, and zoom
right in on the most relevant
documents.

But full-text searching,
whether boolean, natural
language, or otherwise, is only
part of the text retrieval answer.
Suppose HR wants to limit its
search to documents with an
HR executive designation. This
type of fielded data
classification can result from
fields or meta data inside a
document, or from an
overlaying document
management-type application.
With the latter, fielded data
classification can rely on
associated database entries,
such as SQL or XML, or the
addition of fields “on the fly”
during the indexing process.

Adding in Security
Classifications

Now suppose the goal is to
enable searching organization-
wide, but to keep the wrong
documents out of the wrong
hands. For example, suppose
documents that bear certain HR
designations might contain
salary and other confidential
information, and so should be
kept out of the general
information pool—yet still
accessible for authorized HR
employees who may need that
information. Or suppose a
company is doing government
defense work, and needs, as

part of that work, to implement
a classified designation, so that
only employees with a certain
security clearance can review
those documents.

One way to implement these
types of document
classifications is to build
separate indexes for separate
sets of documents that bear such
classifications, and make the
search indexes as well as the
original documents available
only from secure, limited-access
servers. But while this type of
method may work for very
limited designations, it is
unwieldy for implementing a
complex document
classification scheme.

A more elegant security
classification solution involves
a document filter. Filtering is
ultimately a sifting process, the
computer equivalent of panning
for gold, or separating the chaff
from the wheat. The greater the
volume of data that requires
filtering, the more important it
is to automate the filtering
process, usually by looking for
certain flags or keywords.
Hence, the relationship between
filtering and text searching.

In this context, the
classification filter relies on
what dtSearch calls a
“SearchFilter object” for use
while indexing. A search filter
object is a mechanism to specify
a subset of the documents in a
collection for purposes of
limiting a query to that subset.
Conceptually, the SearchFilter
object is similar to a list of
document identifiers.

The SearchFilter object has
the flexibility to integrate with
more complex security settings.
The security settings themselves

Reprinted with permission of PC Al Online Magazine V. 18 #3
For more information about PC Al Online Magazine, visit www.pcai.com

A text retrieval program
like dtSearch typically
receives live data streams,
such as RSS news feeds,
through a programmable
data source interface.
Searching this type of
data usually involves
scanning for a series of
pre-established queries,
much like email filtering.
And like unindexed email
filtering, finding the
relevant key words
usually triggers certain
processes, such as
sending an email notice
after a “hit.”

can exist on various levels. To
use SearchFilters to implement
security, an application would
first create a series of
SearchFilters, one for each
security category, based on
information in the database (or
other repository) that specifies
security rights. When a user
submits a query, the
application would select the
SearchFilter that corresponds
to the user's security category
and attach it to the search.
When the query executes, it
will only return documents
that the SearchFilter permits.

Filtering of Outgoing
Emails

Email filtering typically
scans for certain combinations
of terms that represent
knowledge that should not
leave the organization. For
example, suppose projectx

phase 2322 is a top secret item.
Email filtering could flag any
email body or document
attachment that contains
projectx or 2322.

Since email filtering is a
one-step operation—either the
email proceeds or it does not—
unindexed searching is usually
the more efficient way to
process the search. While
unindexed searching is much
slower than indexed searching,
it is faster to do a single
unindexed search than to build
an index and then do a single
search. And the more advanced
relevancy ranking features that
indexed-only searching provide
tend to be less important in
searching through individual
emails and attachments than in
searching through millions of
documents in a document
repository.

The most important special
feature for email filtering is
fuzzy searching to pick up
typographical errors. In
dtSearch, fuzzy searching
works fully with unindexed
searching as well as indexed
searching. With fuzzy
searching on, a search for
phase 2322 would also, for
example, retrieve a possible
misspelling in the form of
phase 2332.

Typically an organization
will embed unindexed
searching capabilities into a
custom application. Once the
system flags an email, the
system could trigger a warning
to the sender. For example, the
warning might say: did you
really mean to send out an
email mentioning projectx
phase 23227

The intent of the email

filtering outlined above is not to
catch willful abuse of company
secrets, so much as to pick up
casual misuse. Examples of

such casual misuse might be an
email sent in haste that could
wind up in the wrong hands, or
even the accidental attachment
of the wrong file to a message.

In other words, email filtering
protects against ordinary human
error. It does not, for example,
protect against the employee who
copies the projectx phase 2322
files to portable media, and walks
out with this under a jacket.

In addition to scanning
outgoing emails and
attachments, an organization
may also want to search emails
and attachments as archival
records. In that case, indexing
the emails, enabling the
repeated instantaneous search of
the knowledge stores that the
emails and attachments
represent, is the more efficient
retrieval method.

Searching Data Outside
the Enterprise Borders
Whereas the other levels
above relate to data internal to
an organization, this discussion
relates to data outside the
organization. An example is
information that resides on the
Internet, ranging from
competitor Web sites, to
regulatory Web sites. For such
information, the answer is
spidered indexed searching. The
dtSearch Web spider, for
example, can access text in any
named Web site to X levels of
depth, and even follow links off
the site to related sites.
Indexed searching—and
XML as the interchange
language for synthesizing

Reprinted with permission of PC Al Online Magazine V. 18 #3
For more information about PC Al Online Magazine, visit www.pcai.com

A good guideline for
both indexed and
unindexed searching of
forensically retrieved
data is to search twice:
once with a file format
filter on, and once with a
file format filter off. In
dtSearch, for example,
file format filtering
would represent the
default for searching.
And searching without
file format recognition
would correspond to a
binary data search.

search results as in dtSearch—
enables display of data with
highlighted hits and links and
images intact for popular Web-
based formats, such as dynamic
content ASP.NET, as well as
PDF, HTML and Web-based
XML. In fact, such searches
can look to the end-user just
like searching a local file
server, and search results can
even display internal and
external retrieved content in a
fully integrated way. See
Distributed (Indexed)
Searching: Evolution to XML
(next page) for additional
details on this usage of XML.
While this type of indexed
searching does not, except for

Distributed Searching

Portable
Media

the spidering component, differ
significantly from indexed
searching of retrieved files
inside an organization, another
type does differ considerably in
structure. Monitoring of live
data streams such as RSS news
feeds for relevant search
queries would be an example of
the latter type. In that case,
there is no “file” to perform
unindexed searching on, such
as with email messages and
attachments, or the above
spidered Web site content
example.

A text retrieval program like
dtSearch typically receives live
data streams, such as RSS news
feeds, through a programmable

The distributed
search returns to
dtSearch multiple
streams of XML data,
which the application
then combines and
presents to the user
in a single, unified
view. Retrieved
HTML, PDF, XML,
ZIP, MS Office, etc.
files appear with
highlighted hits, as
well as (for HTML,
XML and PDF)
images, formatting
and links intact. A
distributed search
can also support hit-
highlighted treatment
of dynamically-
generated content,
like ASP.NET and
SharePoint.

Reprinted with permission of PC Al Online Magazine V. 18 #3
For more information about PC Al Online Magazine, visit www.pcai.com

The most important
special feature for email
filtering is fuzzy
searching to pick up
typographical errors. In
dtSearch, fuzzy
searching works fully
with unindexed
searching as well as
indexed searching. With
fuzzy searching on, a
search for phase 2322
would also, for example,
retrieve a possible
misspelling in the form
of phase 2332.

data source interface.
Searching this type of data
usually involves scanning for a
series of pre-established
queries, much like email
filtering. And like unindexed
email filtering, finding the
relevant key words usually
triggers certain processes, such
as sending an email notice after
a “hit.”

Since scanning of live data
sources is typically a one-pass
filtering operation, unindexed
searching is usually the more
efficient search method. For
subsequent, often repeat, “on
demand” searching of a data
repository of news feeds, the
balance, however, shifts to
indexed searching. And the

same indexed searching
considerations that apply to a
general information
management repository would
likewise apply.

Searching Forensically
Retrieved Data

When you delete a file, the
data remains; the computer just
marks it as deleted. Both
“undelete” programs and
forensic investigation tools
work to recover such deleted
files. But that, for retrieval of
forensically-recovered data, is
only the beginning. If an
investigator is examining a
stack of harddrives, and not
sure whether one or more are
even relevant to an

Distributed (Indexed) Searching: Evolution to XML

Conventional browser-
based searching returns
search results as an HTML
stream. Returning results in
XML, however, makes for
much smarter search results.

HTML tells how to
display the data, not what
the data 1s. XML tell what
the data 1s, not how to
display it. While HTML
simply paints a picture of
what search results look
like, XML can include
numeric values, such as
number of hits and word
offsets of hits, indicating
where hits are in each
document.

To illustrate, assume a
distributed search of six
servers, some local, some

remote. With HTML, a
distributed search returns six
different search results, with
no method for combining
them. With XML, a
distributed search returns six
streams of XML data.

The distributed search can
then combine the streams of
XML data, presenting a
single, unified and flexible
view. At the user's request, the
XML data can instantly resort
search results from, for
example, ascending date order
to descending hit number.
Retrieved Web-based files
appear just as they would in a
Web browser, 1.e. including all
embedded links and images,
and the addition of
highlighted hits.

A retrieved PDF file
would look similar to other
retrieved Web-based files,
including all existing
embedded images with
highlighted hits. In the case
of the PDF file, however, the
server transmission includes
an XML component along
with the underlying file. The
server first sends links to the
original PDF file, followed
by links to an XML file
describing where the hits are
as page and character
offsets. Adobe Reader,
operating through the
browser, downloads the
XML file with the hit offsets
for highlighting hits.

Reprinted with permission of PC Al Online Magazine V. 18 #3
For more information about PC Al Online Magazine, visit www.pcai.com

Indexed searching—and
XML as the interchange
language for
synthesizing search
results as in dtSearch—
enables display of data
with highlighted hits and
links and images intact
for popular Web-based
formats, such as
dynamic content
ASP.NET, as well as
PDF, HTML and Web-
based XML.

investigation, unindexed
searching is often a good first-
pass tool. Maybe the PC from
the dumpster really did contain
only soup recipes, and has no
bearing on the matter at hand.
An initial unindexed search
can scan the PC for certain key
words to determine threshold
relevance. Often, however,
forensic investigators are
searching not for just a couple
of terms, but for hundreds of

Unindexed
Searching

Works best with

single-pass

operations, like:

e email filtering

e searching live
data feeds like RSS

* making an initial
determination of
relevance in
forensics

terms. For query strings
consisting of hundreds of
terms, building an index and
then searching is generally
more efficient than scanning
the files for all of these terms
in an unindexed search. In any
case, following a determination
or even a suspicion of
threshold relevance—so the
PC was not just for soup
recipes!—the balance clearly
shifts towards indexed
searching.

Whether indexed or
unindexed, searching generally
needs to apply a file format
filter to most current computer
data. Popular file formats such
as PDF, MS Word, and MS
Excel store text in such a way
as to make the text often
unrecognizable in raw form.
For example, abcdefghijklmno
pqrstuvwxyz could look as
follows in a PDF file: 8§ 0
obj<</Length 57/Filter/Flate
Decode/L 69/S 38>>stream
xUb e a....

Without a file format filter,
therefore, a search would
almost certainly miss a lot of
data. But just searching data

applying a file format filter can
miss data that appears only in
raw form. For example, “slack”
space, such as the space
between an end of a file and the
end of the allocated sector, can
hide data. Hence, a good
guideline for both indexed and
unindexed searching of
forensically retrieved data is to
search twice: once with a file
format filter on, and once with
a file format filter off.

In dtSearch, for example,
file format filtering would
represent the default for
searching. And searching
without file format recognition
would correspond to a binary
data search. An intermediate
step in dtSearch, called
“filtered binary,” would, while
viewing all retrieved data as
binary, attempt to
programmatically sift out the
text, and leave behind what
looks like formatting data.

Please visit dtSearch online at
www.dtsearch.com

Indexed
Searching

Use with
everything
else

Reprinted with permission of PC AI Online Magazine V. 18 #3
For more information about PC Al Online Magazine, visit www.pcai.com

https://www.dtsearch.com/

