
— dtSearch®

TECH BRIEF

Reprinted with permission of Programmer's Paradise, www.programmers.com

Searchable Web Content on 
Portable Media

The dtSearch Spider works 
by building a search index 
that stores the location of 
words in the spidered data.

firewall software treats it as if it 
were accessing the Internet. So, 
instead of seamless execution, the 
user sees security alerts and error 
messages. 

Simulating an HTTP server avoids 
the firewall issue, while still 
allowing zero-footprint execution 
from removable media. The HTTP 
simulation approach relies on a 
viewer program embedding a web 
browser control. The control 
displays content just as it would 
online with a web browser. 

Simulating an HTTP server is the 
approach dtSearch Publish takes. 
With dtSearch Publish, all web 
pages and search forms continue to 
appear exactly as they would on 
the web. Features like JavaScript 
and CSS also work identically to 
online. 

The viewer program displays static 
browser-ready content (HTML, PDF 
and XSL/XML) the same as online, 
i.e. WYSIWYG with highlighted 
hits. The viewer program will also 
act like the online application in 

converting browser-incompatible 
content (MS Office, OpenOffice, 
etc.) to HTML for display with 
highlighted hits. 

STARTING WITH PAPER 
Suppose that a project requires 
going one step farther, starting with 
actual paper instead of web 
content. In that case, dtSearch 
recommends and supports the PDF 
“image with hidden text” format. 

The “image with hidden text” 
format stores the complete original 
image of a scanned document, along 
with the OCR’ed text. The format 
hides the text in the sense that 
opening the PDF file displays only 
the scanned image, not the 
underlying OCR’ed text. But 
following a search, the search can 
highlight a word in the OCR’ed text 
itself, over the actual image of the 
document. 

Publishing OCR’ed documents 
online or to portable media works 
the same as with any other 

documents. One search feature, 
however, is essential with OCR’ed 
text — or for that matter, any text 
that might contain typographical 
errors, such as email 
correspondence. To sift through 
OCR’ed or other text containing 
typographical errors requires a 
degree of fuzzy searching. 

With a fuzziness level of 1, dtSearch 
would look for an exact word 
spelling, as well as a slight deviation 
in letters: traveler as well as traveter. 
With a fuzziness of 2, the algorithm 
also looks for additional deviations 
in letters, finding not only traveler 
and traveter, but also trameller. The 
fuzzy search that dtSearch uses is 
not hardwired into the index, so it is 
fully adjustable at the time of search. 

For maximum precision searching, 
fuzzy searching also works in 
connection with all other full-text 
and fielded data search options. And 
fuzzy searching does not 
substantially slow down a search — 
indexed search time is still typically 
less than a second even over a 
terabyte or more of data.

WEB SEARCH OVERVIEW
Web data typically falls into three 
categories: static browser-ready 
content, like HTML, PDF, and 
XML/XSL; dynamic browser-ready 
content, like SharePoint and 
ASP.NET; and browser- incompatible 
content, like MS Office or 
OpenOffice files. 

A single search request should be able 
to span all of these content 
categories. A single search request 

should also be able to 
span multiple Internet 
and Intranet sites. The 
Internet part of a 
search might query a 
competitor’s website 
for a specific 
combination of 
keywords. The Intranet 
part of a search might 

look for a different combination of 
keywords across an enterprise’s own 
local and remote sites.

Operating either as a 
user-interfacedriven software 
component or through a .NET API, 
the dtSearch Spider can meet all of 
these criteria. In both cases, the 
dtSearch Spider can expand the 
scope of a search beyond a site’s own 
data to content on a remote site, 
whether public or private.

The dtSearch Spider displays static 
and dynamic browser-ready content 
WYSIWYG, including display of 
images, formatting and links, with 
the sole addition of highlighted hits. 
The Spider can convert browser- 
incompatible content such as MS 
Office or OpenOffice “on the fly” to 

HTML for browser display with 
highlighted hits.

The dtSearch Spider works by 
building a search index that stores 
the location of words in the 
spidered data. Indexing with the 
Spider involves simply selecting a 
URL or URLs and indicating how 
many vertical or horizontal links to 
follow. The Spider automatically 
figures out the format of the 
content, so there is no need to tell 
the Spider whether a retrieved web 
page contains, for example, an MS 
Office document or a PDF file.

Indexed search time is typically less 
than a second, even over a terabyte 
or more of data. For convenient 
offline access, the dtSearch Spider 
also includes a caching option, to 
store the full spidered content along 
with the index. (Without caching, 
the Spider has to return to the 
relevant URL to display the full 
content with highlighted hits.)

MIRRORING WEB DATA ON 
PORTABLE MEDIA
Suppose you want to provide offline 
access to web searchable content. 
Including a mini-HTTP or HTTPS 
server on portable media offers 
similar data access without a web 
connection. The user need only 
insert a disk, and the disk itself can 
run with zero footprint.

This approach, however, has a major 
drawback. The local HTTP server 
does not actually access anything 
outside of the local machine. But 
because it communicates with the 
web browser using HTTP, some 



Reprinted with permission of Programmer's Paradise, www.programmers.com

TECH BRIEF

firewall software treats it as if it 
were accessing the Internet. So, 
instead of seamless execution, the 
user sees security alerts and error 
messages. 

Simulating an HTTP server avoids 
the firewall issue, while still 
allowing zero-footprint execution 
from removable media. The HTTP 
simulation approach relies on a 
viewer program embedding a web 
browser control. The control 
displays content just as it would 
online with a web browser. 

Simulating an HTTP server is the 
approach dtSearch Publish takes. 
With dtSearch Publish, all web 
pages and search forms continue to 
appear exactly as they would on 
the web. Features like JavaScript 
and CSS also work identically to 
online. 

The viewer program displays static 
browser-ready content (HTML, PDF 
and XSL/XML) the same as online, 
i.e. WYSIWYG with highlighted 
hits. The viewer program will also 
act like the online application in 

converting browser-incompatible 
content (MS Office, OpenOffice, 
etc.) to HTML for display with 
highlighted hits. 

STARTING WITH PAPER 
Suppose that a project requires 
going one step farther, starting with 
actual paper instead of web 
content. In that case, dtSearch 
recommends and supports the PDF 
“image with hidden text” format. 

The “image with hidden text” 
format stores the complete original 
image of a scanned document, along 
with the OCR’ed text. The format 
hides the text in the sense that 
opening the PDF file displays only 
the scanned image, not the 
underlying OCR’ed text. But 
following a search, the search can 
highlight a word in the OCR’ed text 
itself, over the actual image of the 
document. 

Publishing OCR’ed documents 
online or to portable media works 
the same as with any other 

documents. One search feature, 
however, is essential with OCR’ed 
text — or for that matter, any text 
that might contain typographical 
errors, such as email 
correspondence. To sift through 
OCR’ed or other text containing 
typographical errors requires a 
degree of fuzzy searching. 

With a fuzziness level of 1, dtSearch 
would look for an exact word 
spelling, as well as a slight deviation 
in letters: traveler as well as traveter. 
With a fuzziness of 2, the algorithm 
also looks for additional deviations 
in letters, finding not only traveler 
and traveter, but also trameller. The 
fuzzy search that dtSearch uses is 
not hardwired into the index, so it is 
fully adjustable at the time of search. 

For maximum precision searching, 
fuzzy searching also works in 
connection with all other full-text 
and fielded data search options. And 
fuzzy searching does not 
substantially slow down a search — 
indexed search time is still typically 
less than a second even over a 
terabyte or more of data.


