
21Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

JAMIAOriginal Investigations

Affiliations of the authors: Center for Medical Informatics, Yale
University School of Medicine, New Haven, Connecticut (JMF,
PM, PN); Information Technology Office, Veterans Administra-
tion Medical Center, West Haven, Connecticut (FWL, JE);
Department of Radiology, Veterans Administration Medical
Center, West Haven, Connecticut (CT).

The authors thank IBM and the IBM Scholar’s Program for pro-
viding the senior author with a free copy of DB2. The work report-

Model Formulation ■

Integrating Query of
Relational and Textual Data
in Clinical Databases:
A Case Study

JOHN M. FISK, MD, PRADEEP MUTALIK, MD, FORREST W. LEVIN, MS, JOSEPH
ERDOS, MD, PHD, CAROLINE TAYLOR, MD, PRAKASH NADKARNI, MD

A b s t r a c t Objectives: The authors designed and implemented a clinical data mart com-
posed of an integrated information retrieval (IR) and relational database management system
(RDBMS).

Design: Using commodity software, which supports interactive, attribute-centric text and relational
searches, the mart houses 2.8 million documents that span a five-year period and supports basic IR
features such as Boolean searches, stemming, and proximity and fuzzy searching.

Measurements: Results are relevance-ranked using either “total documents per patient” or “report
type weighting.”

Results: Non-curated medical text has a significant degree of malformation with respect to spelling
and punctuation, which creates difficulties for text indexing and searching. Presently, the IR facili-
ties of RDBMS packages lack the features necessary to handle such malformed text adequately.

Conclusion: A robust IR+RDBMS system can be developed, but it requires integrating RDBMSs
with third-party IR software. RDBMS vendors need to make their IR offerings more accessible to
non-programmers.

■ J Am Med Inform Assoc. 2003;10:21–38. DOI 10.1197/jamia.M1133.

ed in this article was supported by NIH Grants U01 ES10867, R01
LM06843-01, and U01 CA78266.

Correspondence and reprints: Prakash M. Nadkarni, Center for
Medical Informatics, Yale University School of Medicine, PO Box
208009, New Haven, CT 06520-8009; e-mail: <Prakash.Nadkarni@
yale.edu>.

Received for publication: 04/08/02; accepted for publication:
08/05/02.

Administrator
Text Box
This article is permitted to be redistributed freely by permission of the Journal of the American Medical Informatics Association, which is the copyright holder, and where it was originally published. Similar articles may be accessed from www.jamia.org

The clinical patient record represents the confluence
of numerous heterogeneous data sources. At one
extreme, it includes highly structured, columnar data
such as complete blood counts and chemistry panels;
at the other extreme is unstructured narrative text,
such as operative reports and admission notes, which
captures human-interpretable nuances that numbers
and codes cannot. Simultaneously managing struc-
tured and unstructured data, however, remains an
ongoing challenge. To the health care worker, no arti-
ficial distinctions are made between a patient’s serum
potassium level and the narrative description of the
resulting dysrhythmia. At the physical data model
level, however, these two facts differ sharply in how
they are represented and manipulated by computer
information systems. The challenge is to hide these
complexities for users who access the information.

We present our experiences with the design and
implementation of an integrated system, built using
primarily “commodity” software, which provides
storage, retrieval, and interactive query of a large col-
lection of structured and textual data. Our efforts,
part of the Veteran’s Administration Medical Center,
Connecticut (VAMC CT) Clinical Data Warehouse
Initiative, represent the first phase in the creation of a
clinical data mart.

Background

The prevalence of relational database management
systems (RDBMSs) for most clinical patient record
systems (CPRSs) reflects their overall dominance of
the database market. RDBMSs have undergone con-
siderable evolution since E. F. Codd’s pioneering
work in the late 1960s.1 Nonetheless, until recently
they have provided only rudimentary storage and
retrieval support for arbitrary-sized text. Typically,
such text is stored as “binary large objects” (BLOBs)
that are composed of a chain of 2–8 KB-sized
“pages.” In most RDBMSs, BLOBs cannot, by them-
selves, be searched for specific content or used for
record selection criteria. Furthermore, pages in a
BLOB’s chain are not necessarily contiguous on disk.
Large BLOBs are often fragmented, with degradation
of query performance when the BLOB is reassembled
on demand during retrieval.

Information retrieval (IR)2 is the field of computer sci-
ence concerned with general methods of processing
and searching text. In IR terminology, individual units
of text, such as clinical notes, are termed documents,
and a database of documents is called a collection. The
pre-processing of documents by IR software gener-

ates indexes, which are structures that facilitate effi-
cient search. At least two indexes are created. The doc-
ument frequency index records the number of docu-
ments in the entire collection in which a particular
term occurs. The term frequency index records how
often a term occurs in a particular document. The data
in these indexes are used to determine how “relevant”
a particular document is to a user’s search, which is
specified in the form of one or more search terms.
General relevance-ranking algorithms in IR include
the classic document-vector algorithms,3,4 which rank
search results based on the frequency of a search term
within a given document and its rarity within the doc-
ument collection (inverse document frequency).

Until the 1990s, IR systems developed essentially inde-
pendently of RDBMSs, with little integration between
the two. For systems needing both IR and RDBMS
functionality, such as CPRSs, designers often built the
IR component from first principles. An example is the
Medical Archival Retrieval System (MARS),5,6 an IR-
based CPRS that was developed by Yount and Vries in
the early 1990s at Pittsburgh and is still used actively.
Such systems, however, represent formidable software
engineering. To avoid duplicating such efforts, there
have been various proposals for implementing IR
within an RDBMS framework.7 Some IR systems, such
as INQUERY,8 are sold as RDBMS add-ons. However,
the explosive growth of the World Wide Web, where
much information is textual, has prompted all major
RDBMS vendors to offer built-in IR support. The
potential advantage of IR+RDBMS integration is that
one may simultaneously query both columnar and
textual data through a common mechanism, struc-
tured query language (SQL).

The latest International Standards Organization (ISO)
version of SQL, SQL-99,9 has draft recommendations
for providing “standard” IR support through the
newly introduced CONTAINS function.10 CON-
TAINS introduces an entire sublanguage with a syn-
tax almost as complex as the data-manipulation sub-
set of the rest of SQL. Despite its seemingly large
scope, however, the ISO draft standard does not
address numerous important implementation details,
such as dealing with documents in their source for-
mats. RDBMS vendors compete either by going
beyond the standard (e.g., adding enhancements to
CONTAINS) or by providing greater ease of use.

Motivation for the Present Work

The Decentralized Hospital Computer Program
(DHCP),11 which is an M (formerly MUMPS) data-

FISK ET AL., Integrated Query of Relational and Textual Data22

base that is used nationally across all VAMCs, stores
clinical narrative along with columnar patient data
such as lab test results. DHCP does not, however,
support any form of computing with the narrative
text (e.g., searching by keywords); the text is merely
displayed to the user who is looking up an individual
patient’s data.

As part of the Clinical Data Warehouse Initiative, we
decided to create a computable resource from the
narrative text—specifically, an efficiently searchable
document collection for general institutional use. In
collaboration with the VAMC Radiology Depart-
ment, we also decided to add functionality so that
this collection could serve as part of a specialized
teaching resource. The Radiology Department had
assembled a large teaching collection of radiographic
images but lacked sufficient follow-up information
on many cases. We needed to allow the radiologist,
given a patient and an imaging study date, to search
the document collection forward in time, highlight-
ing documents that appeared relevant to the patient’s
final diagnosis or outcome. Furthermore, for patients
with a diagnosis known to be challenging, the system
would facilitate identification of diagnostically simi-
lar, but possibly more straightforward, cases for pur-
poses of comparison by enabling access to the VAMC
picture archiving system, which is linked to docu-
ment IDs via Patient ID. An additional goal of the
system was to facilitate institutional review board
(IRB)-approved clinical investigation.

The VAMC CT data warehouse uses Microsoft SQL
Server (MS-SQL) as its production database engine,
and we were committed to using this RDBMS. In a
first iteration toward implementing an IR system, we
loaded extracts of individual DHCP tables into MS-
SQL and indexed them using MS-SQL’s built-in facil-
ities. When testing the system by searching with var-
ious terms, however, we observed repeatedly that
MS-SQL sometimes failed to return certain known
documents that should have matched the query.
Closer inspection revealed that these failures were
due to malformed text, such as incorrect punctuation
(e.g., omission of a space after a period or comma) or
misspellings. We realized that such failures would be
quite common in the context of dictated medical text,
which is minimally proofread. A subsequent detailed
study of the documentation showed that MS-SQL
offered very few options for robust searching in the
presence of malformed text. We therefore needed to
explore alternative IR solutions.

At the same time, we could not abandon RDBMS
technology. The document collection is part of an

integrated solution to identifying patients of interest.
Search terms in narrative text are only one means of
identifying such patients: identification by other cri-
teria, such as demographics and disease codes, is best
done through traditional RDBMS technology. We
therefore needed to explore whether other integrated
RDBMS+IR engines were up to the task. We per-
formed a limited evaluation of Oracle 9i’s IR offering
(Oracle Text), using a small subset of notes, as well as
a review of the documentation of IBM’s DB2 Text
Extender. While DB2 and its documentation are
freely downloadable for academic researchers who
enroll, at no cost, in the IBM Scholars Program, the
software bundle does not currently include the
optional Text Extender.

Other significant issues were cost and compatibility
with existing VAMC systems. The existing institution-
al investment in MS-SQL diminished the possibility of
replacing it with an alternative RDBMS at an institu-
tion-wide level for sake of the IR engine alone. A third
option presented itself: the use of a reasonably low-
cost “pure” IR package that could integrate with an
RDBMS. We therefore evaluated such an IR package,
dtSearch (dtSearch, Inc, www.dtSearch.com), current-
ly the most widely used product on the Windows
platform. dtSearch is also distributed with several
commercial products, notably the Physicians’ Desk
Reference. While very easy to use by nonprogrammers
in stand-alone mode, it also supports programmatic
access to, and indexing of, data stored in RDBMSs.
dtSearch’s functionality can be accessed through any
programming language that supports COM
(Component Object Model), a Microsoft standard that
allows programs on Windows platforms to access
programming libraries in a language-neutral manner.

We first describe the objectives that our proposed
system had to meet, followed by an evaluation of
various commercial software alternatives in helping
meet these objectives. We then describe a brief bench-
marking study to determine the viability of our pro-
posed approach and follow with a description of the
system as finally implemented.

System Objectives

To allow attribute-centric queries about textual
data.

DHCP, like all systems intended for real-time deci-
sion support, is transaction-oriented: it allows only
patient-centric query based on demographic criteria
such as name, social security number (SSN), or med-

23Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

ical record number (MRN). In contrast, attribute-cen-
tric queries allow identification of patients who
match criteria based on clinical attributes or key-
words. This type of searching is better suited to
research activities, which tend to focus on groups of
patients or diseases.

To allow filtration of the document collection by
arbitrary relational criteria (i.e., to allow integrated
query of relational and textual data).

Users need to perform queries based on both narra-
tive-text criteria and arbitrarily complex relational
criteria, and one must consider how best to support
integrated queries when the complexity of the rela-
tional criteria cannot be fully anticipated. Our pro-
posed solution to this problem took a two-fold
approach. The task of filtering on certain criteria,
such as patient identifiers (name, SSN or MRN), doc-
ument date, or type of report, was considered com-
mon enough to warrant direct support. Beyond this,
our application would allow use of any query tool,
such as Microsoft Access’s Query Design interface, to
compose and execute arbitrarily complex relational
queries that would create a temporary table of
patient IDs. These IDs would then be used to filter
the text search results or, in suitable circumstances, to
limit the extent of text search.

To provide domain-appropriate relevance ranking
of search results.

The built-in relevance-ranking algorithms of IR
engines mentioned earlier proved to be of limited use-
fulness for two reasons. First, we found that term fre-
quencies tended to be quite low: a random selection of
documents revealed that keywords signifying posi-
tive clinical findings, procedures, or diagnoses rarely
occurred more than twice in a document because of
the brevity of most documents and the avoidance of
unnecessary repetition. The resulting small differ-
ences in term frequency reduced its value as a dis-
criminant. Second, every document in this collection
always describes a particular patient; any ranking
algorithm must take this association into account.

We devised ranking algorithms based on two
observations.

1. For any given search, the greater the number,
diversity of type, and occurrence over time of doc-
uments belonging to a particular patient, the more
likely it was that the patient represented an “inter-
esting case.” In good case summaries, significant
positive elements tend to be carried over as “past

history,” whereas a keyword occuring in only one
document might be mentioned only in passing
(e.g., as a condition to be ruled out).

2. Keywords in certain types of documents, such as
operative notes or pathology reports, tended to
represent “true positive cases.” In radiology notes,
by contrast, the keyword often indicated suspicion
rather than confirmation of a condition.

The ranking algorithm that we devised groups docu-
ments by patient and ranks, matching patients by
total number of documents per patient and docu-
ment type weighting. By default, all document types
are given equal weight (of 1), but the user can change
these weights. Thus, types with a weight of zero
would be eliminated from a search.

Our use of a problem-specific algorithm is by no
means unique. Frisse, in creating a hypertext version
of the Washington University Manual of Medicine,12

used a modified document-vector algorithm that
weighted the hyperlinks associated with a document.

To support robust search in the presence of
malformed text.

Whereas “structured dictation” software, along with
voice recognition, is used to record standardized
information such as chest x-rays or mammograms,
much dictated text is still transcribed off-line before
being reviewed by the dictating clinician. The tran-
scription task is often outsourced to service bureaus.
Persons who are not professional transcriptionists,
such as residents, may enter other text, such as
progress notes, directly into the system. In any case,
medical text within a hospital record system contains
many more misspellings and incorrect punctuation
than written text intended for publication, which is
vigorously proofed by editorial staff.

Comparative Evaluation of IR/RDBMS
Software

This section reports the results of our comparative
evaluation of the IR features of MS-SQL, dtSearch,
Oracle Text and DB2 Text Extender.

Indexing

Ease of Indexing

Creating IR indexes (“Full-Text Catalogs”) with MS-
SQL is exceptionally easy. A “wizard” makes this a
trivial point-and-click operation.

FISK ET AL., Integrated Query of Relational and Textual Data24

As stated before, dtSearch can be used in two modes:
as a stand-alone IR engine and integrated with an
RDBMS. In the former mode, indexing and searching
can be done easily and interactively through a GUI
that is geared toward nonprogrammers. In contrast,
when accessing data that is physically stored in an
RDBMS, the indexing and searching interface must
be programmed. For the production system that we
ultimately created, however, this merely entailed
making minor modifications to the code examples in
the dtSearch documentation, which constitute less
than 100 lines of code.

Indexing in Oracle and DB2 Text Extender is done
through the command line.

Indexing Options

MS-SQL provides little control over index creation
beyond defining the index name, location, and which
tables and columns are indexed.

dtSearch provides better control over index creation.
Options include whether numbers are indexed,
whether the index is accent-sensitive or case-sensi-
tive, how hyphens are handled, maximum word
length, and which configuration files are used to
specify stop-words, and so forth. (Stop-words are
very common words like “the” and “and,” which are
not useful for searching.)

Oracle allows fine-grained control of indexing
through a “Preferences” system, which is invoked by
calling special subroutines (“stored procedures”).
Although not particularly intuitive, the default
options are reasonable for most situations. Oracle has
numerous options for non-English languages; for
example, compound words in German and Dutch are
divided into their constituent words during indexing.

With DB2 Text Extender, when designating a column
for indexing, one must define an alias (“handle”) for
it: a query that invokes CONTAINS must use the
handle rather than the column name itself. Although
not a major barrier to use, this is a significant devia-
tion from the ISO standard. DB2 allows less flexibili-
ty than dtSearch or Oracle in that one must decide
whether to allow inflectional search, in which varia-
tions in tense or person are ignored; precise search for
exact phrases; or fuzzy search to identify words
despite misspellings. A different index type supports
each of the three search categories. One cannot, for
example, perform inflectional or fuzzy search with a
precise-search index. Changing the index type
requires re-indexing of the documents, because a text

column cannot be simultaneously indexed with two
different types of indexes.

Comparison of Searching Features

The feature sets of MS SQL Server, dtSearch and
Oracle, are summarized in Table 1. We discuss details
of each feature below. Features that are particularly
relevant to medical text are marked with asterisks,
with a brief explanation as to why they are relevant.

All of the packages provide basic functionality, such
as exact term and phrase searching, searching for a
word by prefix, inflectional searching, and variable
term weighting, in which different terms in a query
are given different weights to indicate their relative
importance to the user. They support complex
Boolean search as well as “natural language” search.
In the latter, a sentence or passage can be supplied to
the IR engine, which then strips off all stop-words,
and then relevance-ranks documents in the collection
to the remaining words in the passage. The differ-
ences among the packages are described below.

Robust Handling of Variations in
Punctuation Style*

As stated previously, the punctuation within dictated,
nonreviewed medical text often departs from strict
rules of style. Of the packages, only MS-SQL falls
short. When a space is omitted after a period, MS-SQL
treats the construct <token-1><period> <token-2> as
though it were a new word. The instances of token-1
and token-2 are not recognized as individual words:
this is a significant bug. Improper recognition of word
and sentence boundaries not only results in missed
searches, but also tends to swell the IR indexes with
spurious “compound words.”

Fuzzy Search*

Spelling errors in medical text tend to be especially
numerous in collections in which a significant frac-
tion of the documents consists of brief notes (e.g., fol-
low-up notes) that are reminders to oneself rather
than meant for public review. We encountered 68 dif-
ferent variants of “orchiectomy,” of which only one
other form (the British “orchidectomy”) could be
considered correct. The polysyllabic medical terms
that are most likely to be misspelled are also most
likely to be keywords of interest. Fuzzy search deals
with this situation. Existing implementations tend to
be based on the well-known agrep (approximate grep)
algorithm of Wu and Manber.13 DB2 uses a special
type of index (N-gram index) for fast fuzzy search.

25Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

MS-SQL lacks fuzzy search capability entirely.
dtSearch allows the user to control the level of “fuzzi-
ness” on a per-search basis, in terms of number of
mismatched letters, in specifying a search. Oracle and
DB2 allow fuzzy search if the index has been set up
accordingly: with Oracle, enabling fuzzy search is the
default. The latter two packages, however, require
one to specify the level of mismatch in terms of a
fuzzy “score” or “level” whose interpretation is not
intuitive, and whose use requires experimentation.
Oracle’s default setting matched “hyperpituitarism,”
also a commonly misspelled word, to “hypopitu-
itarism,” which has a mismatch of two letters.

Proximity Searching with Distance Specification

Proximity search lets one specify that the keywords
of interest should occur within a certain range (e.g., a
certain number of words from each other). MS-SQL
provides a very limited form of proximity (X NEAR
Y), but the interpretation of “NEAR” is not docu-
mented. A conference with Microsoft developers
indicated that it used a threshold of 50 words.
Because proximity information is not indexed in MS-
SQL, searches using NEAR run relatively slowly.
Oracle and dtSearch allow precise specification of

distance, in terms of number of words or words with-
in the same sentence or paragraph. Queries specify-
ing proximity in terms of word distance utilize prox-
imity indexes for speed. DB2 allows specification of
proximity within the same sentence or paragraph,
but not in terms of number of words.

XML-Aware Searching

Many documents have their content structured by
divisions into sections. Currently, such structure is
increasingly provided using standards based on
XML (Extensible Markup Language).14 For example,
the title of a document may be enclosed within tags
such as <TITLE>....</TITLE>. The names of the tags
that are used for a given document are determined by
another document called an XML schema15 (or its
older counterpart, the Document Type Definition16).
The latter document specifies what tags are permissi-
ble and how they are used; for example, certain tags
can be nested within others. XML is too vast a topic
to introduce here; a suitable reference is Means and
Harold.17 In the medical field, the proposed HL-7
Patient Record Architecture (PRA) standards18 may
eventually yield clinical documents in tagged XML
format.

FISK ET AL., Integrated Query of Relational and Textual Data26

Table 1 ■

Summary of the IR Capabilities of the Four Software Packages Evaluated*

Feature MS SQL Server 2000 dtSearch Engine 6.0 Oracle 9i IBM DB2 Text Extender

Exact term and phrase matching Yes Yes Yes Yes

Boolean searches Yes Yes Yes Yes

Natural Language searches Yes Yes Yes Yes

Prefix searches Yes Yes Yes Yes

Word stemming (inflectional searches) Yes Yes Yes Yes

Term weighting Yes Yes Yes Yes

Proximity searches Very limited Yes Yes Limited to sentences and
paragraphs only

XML-section-aware searches No Yes Yes Yes

Wildcard searches Yes Yes Yes Yes

Regular expression searches No Yes No No

Fuzzy searches No Yes Yes, set at indexing time Yes, set at indexing time

Phonic searches No Yes Yes Yes

Synonym expansion No Yes Yes, Yes

Built-in thesaurus No Wordnet No No

Case-sensitive searches (*) available? No Yes Yes, set at indexing time Yes, set at indexing time

Individually Customizable Stop-word lists No Yes Yes No

Availability of Word List No Yes No No

*A detailed explanation of each feature that is listed is provided in the text.

All of the IR engines discussed here, except MS-SQL,
are XML-aware and allow the user to specify that the
terms of interest must occur within a given “field”
indicated within the span of particular XML tags.
Such search may be regarded as a special type of
proximity search. Currently, however, none of the
engines appear to be XML-Schema–aware. Because
different documents in the same collection may be
based on different XML schemas, such engines “play
it safe” and do not take advantage of an existing
schema to create indexes that are optimized for such
searches. Although specialized database engines,
termed native XML databases,19 exist for the purpose
of efficiently storing and manipulating XML docu-
ments, they currently lack the advanced features nec-
essary for IR capability.

Ability to Index Formatted Documents

This is an important feature when source documents
are either created or stored with formatting informa-
tion. dtSearch and Oracle recognize a wide variety of
formats: Oracle, through third-party software, can
recognize up to 100 formats, although many of these
are rarely encountered. MS-SQL recognizes Word,
Excel, PowerPoint, and HTML. DB2 supports the
fewest. For practical purposes, only HTML and XML
are recognized; the supported versions of word
processor formats have long been obsolete.

Regular Expression Search*

Regular expressions20 provide a powerful syntax for
searching for complicated patterns in text, such as
one of several possible sequences of letters followed
by a sequence of numbers. In the medical context, the
use of regular expressions is typically the first step in
information extraction from structured medical notes
that are generated by assisted dictation systems,
which use boilerplate formats with numerous stan-
dardized headings and sections. Regular expressions
can also be used to express spelling variations of indi-
vidual terms through a compact notation (e.g.,
Latinized vs. U.S. English, such as “haemoglobin” vs.
“hemoglobin,” or British vs. U.S. English, such as
“odour” vs. “odor”). Lexical analyzers,21 which are
used in compilers or interpreters for programming
languages, use regular expressions extensively, as do
ad hoc text mining programs. By definition, regular
expression patterns are arbitrary (i.e., supplied by the
user dynamically) and cannot be pre-indexed.
However, algorithms for regular expression pattern
search have been extensively refined over the years
and are very efficient. dtSearch is the only package
that supports regular expression search.

Controlling Case-sensitivity of Search*

Medical text contains a significant number of
acronyms, many of which would be common words if
they were written in lower case (e.g., “AIDS”).
Therefore, although one generally needs to locate key-
words regardless of case, the ability to specify case-sen-
sitive search can be important when needed. MS-SQL
does not allow any control. The behavior of Oracle and
DB2 is dictated by how a particular column’s index
was created; this cannot be changed without re-index-
ing. dtSearch allows maximal flexibility. Two different
indexes, one case-sensitive and the other case-insensi-
tive, can be created on the same data, and the user can
switch from one to the other. Alternatively, if a case-
insensitive index was created, case-sensitive keywords
can still be searched using regular expressions.

Ability to Specify Search Across All Fields, or
Limiting Search to Specific Fields

Searching across all fields is of value when a table or
tables possess numerous string columns, any or all of
which have been indexed. The user may wish to
search across all indexed fields or limit the search to
a specified subset of fields. This is MS-SQL’s strong
point. The CONTAINS implementation allows one to
specify, with a wildcard, that all columns in a table
that are IR-indexed should be searched. In Oracle and
DB2, the CONTAINS function allows only a single
column to be specified: this is a weakness that limits
their power for some applications, as discussed
below. For dtSearch, one can implement the equiva-
lent of MS-SQL programmatically; at index creation
time, all columns of interest in a table are indexed.

Support for an External Thesaurus*

Although support for synonym-based query expan-
sion can benefit search of documents in any knowl-
edge domain, it may arguably have a greater impact
in medicine, where both Greco-Latin as well as com-
mon (Anglo-Saxon) forms exist for the same concept
(e.g., emesis vs. vomiting). External thesauri provide
powerful query term expansion capability. Thesauri
generally provide concepts with several types of rela-
tionships, including synonyms, related terms, “par-
ent-child” (general/specific), and “part-of” relation-
ships. MS-SQL lacks thesaurus capability. dtSearch
uses a customized version of the WordNet lexical and
semantic network22 and also allows supply of exter-
nal thesauri. Oracle and DB2 are a shade more pow-
erful than dtSearch, in that they allow search of many
other types of hierarchical relationships. However,
they do not come with built-in thesauri.

27Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

Displaying a List of Words in the Index, with their
Frequency Counts*

Medicine is well known for numerous compound
words that are derived from several Greco-Latin
roots (e.g., chole-docho-jejun-ostomy [hyphens
added]). Such words are often misspelled. Fuzzy
search and, to a lesser extent, regular expressions are
useful for dealing with misspellings, but it is clearly
impossible to anticipate every possible misspelling.
Ability to interrogate the alphabetically sorted docu-
ment frequency index, within a “window” centered
on a particular term, can help in this regard, because
misspellings for such words tend to occur in the lat-
ter part of a word rather than the first part. A query’s
recall is then improved when the user can specify the
multiple alternative forms that are discovered in the

list. dtSearch is the only package that allows this, as
shown in the Word List of Figure 1.

In summary, MS-SQL is the weakest of the packages
in all aspects except two: ease of use and search
across multiple text fields in a table. For dictated
medical text, dtSearch has a significant edge over
Oracle and DB2. For multi-language document col-
lections, such as those that might be gathered by a
Web search, Oracle and DB2 are more powerful than
dtSearch. Their features in this regard have not been
discussed because they are not directly relevant to
this paper. However, Oracle and DB2, especially the
former, have a significant learning curve because of
their command-line orientation, which makes much
of their power needlessly hard to access.

FISK ET AL., Integrated Query of Relational and Textual Data28

F i g u r e 1 . The “Word list” for a search term of interest, which is accessed through one of the pages in the multi-tabbed
control of the left half of Figure 2. This page lets the user access the Document Frequency Index for all terms in the collection
that are centered around a particular term. The list shows the word and the number of documents in which it occurs. This
screen shot illustrates the numerous ways in which the term “anhedonia” and its adjectival form “anhedonic” have been mis-
spelled.

For our proposed system, we decided to use dtSearch
for the reasons of feature set and cost. It is less expen-
sive than the RDBMSs by more than an order of
magnitude. We had to consider one final issue: inte-
gration with MS-SQL. This issue is discussed below.

One Software Package or Two?

As we have stated, our proposed system needs both
IR and RDBMS functionality. A presumed advantage
of using a single software package to perform both IR
and RDBMS tasks, as opposed to using two separate
programs that must communicate through code writ-
ten by the developer, is a higher level of integration,
with possibly much better performance.

The MS-SQL and DB2 IR engines are external pro-
grams that happen to be architecturally distinct from
the RDBMS engines: MS-SQL, for example, uses the
Microsoft Full-Text Indexing and Searching services.
The RDBMS engines merely act as brokers for text
search requests. The consequences of this are illus-
trated by using the following simple query as an
example. Suppose we wish to identify all documents
of type “surgery note” with the report date 5/1/
2001, which contain the keywords “lung” and “can-
cer.” The relational criteria (report type and date)
match 8 documents in the VA CT collection; the IR
criterion matches about 16,000 documents. One
would expect the RDBMS to use an evaluation of
relational criteria, which is very fast because both
report type and report date are indexed, to limit the
IR search and return matching results rapidly.
Instead, when the IR is performed by an external
service, the search is actually performed as follows23:

■ The RDBMS passes the CONTAINS part of the
query to the IR service.

■ The service processes the request and returns all
16,000 matching document IDs into an internal
table.

■ The query is rewritten as a standard SQL statement
that joins the results of the relational query to the
internal table on the common field (document ID).

■ The rewritten query is executed, the results are
returned to the user, and the internal table is trun-
cated, to yield the final results (2 documents).

Oracle Text integrates the IR engine more closely
with the RDBMS; as described later, however, this
integration is far from complete.

The importance of such “loose coupling” is that
replacement of the built-in IR engine by manually

integrating a third-party IR engine may not incur sig-
nificant additional performance penalty. In fact, our
benchmark in the next section shows that this partic-
ular query runs almost twice as fast when dtSearch is
used in conjunction with MS-SQL. The major issue to
be addressed is ease of software development. Some
programming is required in any case. The richness
and complexity of SQL-99’s CONTAINS function
currently make it necessary to build a GUI for non-
expert users to access its features. The question is
whether having to send the search commands that
result from the user’s actions to an external IR
engine, instead of to the RDBMS, constitutes a signif-
icant hurdle, or whether such an effort is justified in
terms of yielding additional functionality.

Comparative Benchmarking of MS SQL
Server and dtSearch

The benchmarks described below compare MS-SQL
with dtSearch. Development and testing were per-
formed on a dual-processor microcomputer with two
Intel Pentium III 1.0 GHz CPUs, 512 MB of RAM,
with two 40-GB hard drives in a RAID-0 configura-
tion. All software ran locally and included a MS-SQL
2000 database back-end and a Microsoft Access 2000
front-end client connected to MS-SQL via ODBC. The
client accessed the dtSearch Engine (version 6.04) via
its COM interface.

Document Procurement and Storage

We used a commercial ODBC driver for DHCP (KB-
SQL, Seattle Systems) to bulk-import selected DHCP
tables into multiple Microsoft Access files and thence
into the MS-SQL database. Because DHCP often
stores reports as multiple 80-character-per-line
records, we converted such data from a sequence of
records to a single string that was then stored in a
TEXT column. All document texts were stored in a
single table, one row per document, together with
basic descriptors such as unique document ID,
patient ID, report type, and report date. Merging of
the various report types in this way allowed us to
avoid unnecessary and potentially expensive join
operations across multiple tables and simplified the
program code that performed document indexing
and searching.

Document Collection Characteristics

The document collection totaled 2,809,339 reports for
70,328 patients and spanned a 5-year period. The num-

29Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

ber of documents per patient ranged from 1 to 1,642
with an average of 39 and a median of 12; many
patients had reports of multiple types. The significance
of this is that the performance of our ranking algo-
rithms improves as the number and diversity of docu-
ments per patient increase. We also noted the brevity of
most reports. Although length varied considerably,
85% contained fewer than 300 words, and 96% had
fewer than 600 words. All pathology and cytology
reports were shorter than 300 words. Tables 2 and 3
summarize the document collection characteristics.

Indexing Speed and Index Size

In this test, dtSearch operated on data stored within
the MS-SQL database, although its indexes were cre-
ated as disk files outside the database. dtSearch ran

considerably faster than MS-SQL. Both indexers were
run repeatedly: dtSearch took from 3.5–4 hours,
whereas MS-SQL took from 20–28 hours. MS-SQL
indexer runs only as a “background” process,
although we attempted to improve performance by
increasing its job priority and shutting down all other
applications and services. The index created by
dtSearch was significantly larger than that created by
MS-SQL (2.25 GB vs. 1.1 GB), because it stores finer-
grained proximity information. The proximity index
records the exact position of an individual term with-
in a document. Position is typically recorded by word
offset from the start of the document, but other meas-
ures, such as sentence and paragraph offsets, may
also be recorded.

Search Performance

In these benchmarks, we compared the performance
of dtSearch to that of MS-SQL after indexing was
complete. We automated the testing through a rou-
tine that executed queries against both engines in
tandem, with results being saved to separate tempo-
rary tables. A second routine identified rows in one
table that were absent in the other. Analysis required
careful review of each document in the difference set.
The observations, apart from helping to diagnose the
reasons for failure, also enriched our understanding
of the document collection itself. Table 4 shows
benchmarks for comparison of MS-SQL vs. dtSearch
for a variety of queries, both simple and complex.
Several queries involved relational and IR criteria. In
this scenario, dtSearch operated in conjunction with
MS-SQL, with the latter program performing the
relational part of the query. The mechanism of com-

FISK ET AL., Integrated Query of Relational and Textual Data30

Table 2 ■

Summary of Descriptive Statistics on Various Types of Reports in the VAMC CT Collection*
of Avg. Median

Document % of Distinct Word Word Word Range Report Byte
Report Type Count Documents Patients Count Count Count (rounded) Period Count

Medical Report 1,966,600 70.00 61,192 384,358,313 195 116 100–6000 10/1/1994–9/1/2001 2,594,725,432

Radiology Report 403,929 14.38 43,185 34,693,902 85 68 50–2200 5/1/1996–8/1/2001 230,897,633

Radiology Impression 399,342 14.21 43,063 9,478,025 23 15 10–1000 5/1/1996–8/1/2001 65,036,534

Surgical Note 13,491 0.48 7,495 5,529,147 409 356 150–3400 4/1/1996–7/1/2001 36,888,138

Pathology Report 19,194 0.68 10,655 380,097 19 5 3–100 4/1/1996–7/1/2001 3,034,330

Cytology Report 6,515 0.23 3,418 92,896 14 12 5–100 4/1/1996–7/1/2001 779,143

Autopsy Report 268 0.01 268 284,024 1,054 1,331 150–3400 1/1/1997–2/1/2001 1,959,049

TOTALS: 2,809,339 434,816,404 2,933,320,259

*The distribution of words in all types of documents is highly non-Gaussian, as indicated by a significant difference between the average
and median word counts.

Table 3 ■

Number of Patients with More Than One Type of
Note*
Report Types # of Distinct Patients

Medical 61,192

Medical + Radiology 34,177

Medical + Radiology + Surgery 7,158

Medical + Radiology + Pathology/Cytology 11,047

Medical + Radiology + Surgery
+ Pathology/Cytology 5,196

Medical + Radiology + Surgery
+ Pathology/Cytology + Autopsy 67

*This information is useful in determining how useful our patient-
ranking algorithm, which ranks patients by the number of docu-
ments containing a keyword, will be in practice.

munication between the two programs is discussed
in the System Description section.

dtSearch was faster in all of the queries except two,
which are indicated by asterisks. The timing bench-
marks represent the average of two values, which
were obtained each time after shutting down the
machine and starting the software again. This was
done to eliminate cache effects, which are well-
known with disk-based operations. Sometimes run-
ning the same query a second time shortly after the
first will return results instantaneously, because the
previous results are still in memory. The timing fig-
ures show that search times increase with the number
of matching documents. Although we have no expla-
nation for the two cases in which dtSearch ran slow-
er, the results suggest that the IR implementation of
dtSearch is more optimized than that of MS-SQL.
Certainly, any performance penalty that might have
been expected for dtSearch, due to the need for two
programs to communicate with each other through
our code, appears to be absent.

For result sets of less than 200 documents, we visual-
ly inspected each document through the interface,

which facilitates rapid visual evaluation by high-
lighting individual words in the search terms where
they occur in the text. There were no false positives,
but in a few cases, dtSearch returned more docu-
ments than MS-SQL. When inspected, these docu-
ments showed malformed punctuation in the vicini-
ty of the word (e.g., absence of spaces after commas
or periods). This set of documents, therefore, consti-
tuted false negatives with respect to MS-SQL. No
documents identified by MS-SQL were missed by
dtSearch. Based on the above benchmarks, we elect-
ed to use the dtSearch engine for text indexing and
searching of data stored in MS-SQL rather than using
MS-SQL’s built-in IR features.

System Implementation and Description

Figure 2 outlines the algorithm used to couple text and
relational searches. Figure 3 shows the user interface of
our application in operation. The salient features of the
interface, and the algorithm, are described below.

1. The relational part of the query is generated auto-
matically through the user’s interactions with the

31Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

Table 4 ■

Comparison of MS-SQL vs. dtSearch for 14 Queries*
Search Time (secs) Number of Matches Additional Matches

____________________ ____________________ _____________________
Query dtSearch MS-SQL dtSearch MS-SQL dtSearch MS-SQL

“craniopharyngioma” 4 4 71 71 0 0

“angioplasty” 215 303 17,187 16,994 193 0

“hypopituitarism” 2 6 142 142 0 0

“nerve sheath tumor”* 9 1 42 42 0 0

“degenerative disk disease” 9 13 3,365 3,365 0 0

“guillain barre syndrome” 5 10 127 127 0 0

“seminoma” AND “orchiectomy” 2 3 56 53 3 0

“esophageal varices” AND “cirrhosis” 9 38 1,783 1,729 54 0

“tumor” OR “mass” OR “malignancy” [limit to
radiology report] 473 893 59,211 59,183 28 0

(“squamous cell carcinoma” OR “SCC” OR “SCCa”)
AND “laryngectomy” 4 10 180 178 2 0

“aorta” AND “aneurysm” [limit to date 7/1/2000–7/5/2000] 9 19 18 18 0 0

“hepatic” AND “cirrhosis” [limit to date 9/1/2000–9/7/2000] 9 19 4 3 1 0

“lung” AND “cancer” [limit to surgery notes, date 5/1/01] 11 20 2 2 0 0

“colon NEAR adenocarcinoma”* [limit to date
1/1/2000–1/1/2001] 18 11 80 73 7 0

*dtSearch is faster in all except two, indicated by asterisks. The columns show the respective times for the query (in seconds), the total num-
ber of documents returned by both programs, and the documents returned by one program that were not returned by the other. The docu-
ments returned by dtSearch are always equal to, or a superset of, the documents returned by MS-SQL. MS-SQL missed some documents due
to malformed punctuation, e.g., no space after a period, so that a term of interest is “conjoined” to the first word of the next sentence.

program. The user can search for documents related
to a single patient or provide a table containing a list
of patient IDs of interest. This table may have been
generated by any external power-user-oriented query
application, such as Microsoft Access’s own query
builder, that is capable of creating a list of patient IDs
(e.g., patients seen in a particular department within a
date range) and matching a particular set of ICD-10
codes. The database executes the generated SQL,
returning the results for display and/or further use.

2. The IR search request is input using the dtSearch
“query language,” which is partially, but not entirely,

composed through the user’s actions. Online help
assists query formulation. In addition, a “word list”
(see Figure 1) allows the user to retrieve a list of terms
in the index that are in the lexically ordered vicinity
of a term of interest, with the number of occurrences
of each term in the document collection. This list is
useful to detect alternative misspellings of a term in
the collection.

3. In brief, the algorithm analyzes the search request
and partitions it into its relational and text search
components. The two search operations are coupled
as follows. A count of the number of rows matching

FISK ET AL., Integrated Query of Relational and Textual Data32

F i g u r e 2 . Search and ranking algorithm used by the application. The search request is separated into its relational and
IR components, either of which, but not both, may be omitted. If a relational criterion exists, the count of records that match
it are determined, and the result is used to determine whether the list of documents that match the criteria can be supplied
to the IR engine to restrict the degree of search. If the number of documents matching the relational criterion is less than 500,
one can save time by feeding the list of document IDs to the IR engine.

the relational criterion is first determined by using
SQL’s COUNT() function.

■ If this count is less than 500, the relational search
is executed, the matching rows are retrieved, and
the resulting document IDs are fed into the IR
search to limit the latter and produce a final
results table (scenario 1).

■ If the count is greater than 10,000, the IR search
is executed first, a temporary results table is cre-
ated, and the original relational query is rewrit-
ten by incorporating this temporary table. The
rewritten query is then executed to yield the
final results table (scenario 2).

■ If the number of rows is intermediate, then both
relational and IR queries are executed independ-
ently, and the resulting temporary tables are merged
in a second step to yield the final results table.

4. For scenario 1, we use a dtSearch feature called
File Conditions, which allows a textual search to be
limited based on properties of the documents that are
being searched, such as document name or creation
date. During indexing time, we specify the primary
key of the Reports table (the Report ID) as the docu-
ment name and the date of the report as its creation
date. Thus, one can limit the text search by date range
of the reports. Similarly, if one is searching for key-
words in documents applicable only to a single

33Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

F i g u r e 3 . The user interface of our application. The user can search for one or more keywords or interest. Various search
options, such as weighting of terms and regular expressions, are available under the “Text Search Options” tab. The search
results can be limited to one or more report types or to within a range of report dates. One can also search for reports of a
single patient or for multiple patients who have been previously identified and recorded in a temporary table, which is iden-
tified to the application in the lower-left part of the screen. The “Search Status” displays search progress—the most recent
message is at the top—and a ranked list of matching patients is shown on the top right. Patient names have been removed
by editing of this screen shot. Selecting a particular patient displays a list of reports available for the patient, and clicking on
a particular report illustrates its contents. The terms of interest are highlighted in the document where they occur. Here the
term “craniopharyngioma” is off-screen.

patient, one can retrieve the relatively few Report IDs
for this patient and pass them in the File Condition
along with the search command proper. File condi-
tions work well when the number of documents
matching the specified file properties is reasonably
small (i.e., less than 500). Tests showed that, beyond
this threshold, File Conditions do not help and may
even affect the search adversely.

Scenario 2 is used to preclude situations in which the
relational criterion by itself is so broad (e.g., all radi-
ology notes) as to return a significant fraction of the
database’s contents if executed directly. Executing a
rewritten query limits the final number of documents
in a more efficient manner.

The File Conditions feature was used in the penulti-
mate benchmark of Table 4, described in the previous
section. The search time decreased from 20 seconds
with MS-SQL alone to 11 seconds with dtSearch and
MS-SQL working cooperatively.

5. By default, search results are organized by patient
and presented in descending rank by the total number
of documents per patient. Selecting a patient displays
a list of associated documents, sorted by time to give a
sense of the tempo of an illness or condition.
Alternatively, the user can rank search results by
report type weighting. Initially, all document types,
such as pathology report or surgical operative note,
are given a weight of 1. Giving a report type a higher
weight results in higher ranking for patients for whom
the desired report type exists. This is valuable, for
example, if the user had performed a search for “pan-
creatic adenocarcinoma” and was particularly interest-
ed in cases for which a surgical note was available.

Present Status

The application that we have described has been
developed primarily for limited deployment within
the VAMC, chiefly within the Information Technology
Group and the Department of Radiology. In general,
applications built using Microsoft Access clients are
not suitable for large-scale deployment in an institu-
tion. The logistics of updating the client software on
dozens of machines each time enhancements are
made to the program are formidable. “Three-tier”
solutions that provide access through a Web browser
are more appropriate to such scenarios, but these
require a significant degree of software engineering.

We regard the present application as only a first step
in providing text-mining facilities for the VAMC CT
collection.

Limitations of the Present Work and Future Work

Several limitations of this present study are worth
noting. First, we have evaluated only the three most
popular high-end RDBMSs in terms of number of
licenses, Oracle, MS-SQL and DB2. We have not eval-
uated Informix, which is now an IBM acquisition
whose technology is expected to be merged with DB2
in the long term, or Sybase. We were interested pri-
marily in determining the feasibility of using com-
modity software components to provide the frame-
work for an IR+RDBMS system and what issues need
to be addressed in this undertaking. For developers
using RDBMS packages other than the ones we have
evaluated, however, the features listed in Table 4 can
serve as the basis of an evaluation worksheet.

A well-known problem with indexing and searching
by words alone is that, because medicine has multi-
ple synonyms, the user must specify alternative
forms of a keyword to avoid missing potentially rel-
evant documents. Although thesaurus-based syn-
onym expansion can address this issue partially for
single-word synonyms, it is vulnerable to word order
when multi-word concepts are involved. A more
robust approach for addressing this issue is to pre-
process the documents and match phrases in the text
to concepts in a controlled medical vocabulary. This
technique, concept indexing, is potentially powerful,
but not foolproof, because of the presence of polyse-
my, as pointed out in an editorial by Masys.24

Polysemy refers to the existence of terms with multi-
ple meanings that cannot be readily disambiguated
by the concept-matching algorithm (e.g., “anesthe-
sia” can refer to a procedure ancillary to surgery or to
the clinical finding of loss of sensation). Concept
matching is also complicated by the presence of non-
standard abbreviations, grammatical errors and neol-
ogisms. For these reasons, concept indexing cannot
replace word indexing but can only be ancillary to it.

Another problem with both word and concept index-
ing is that of negation. Negated concepts come princi-
pally from two sources: pertinent negatives recorded
during medical history taking and the formulation of a
differential diagnosis that lists conditions that are to be
ruled out. The mere presence of a term or concept in a
document does not necessarily make the document rel-
evant for that keyword. The ranking algorithm used
with our search application partially addresses this
issue. If a patient has only one document matching a
keyword of interest, we found that it frequently was
either a pertinent negative or part of a differential diag-

FISK ET AL., Integrated Query of Relational and Textual Data34

nosis. In contrast, the patient for whom multiple
matching documents existed, particularly if the docu-
ments occurred over a span of time, nearly always rep-
resented a relevant case. This is admittedly a half-
measure, and more robust recognition and indexing of
concept negation need to be incorporated. We envision
future work in at least two areas.

1. Our group has previously studied the problems of
both concept indexing25 as well as concept indexing
with detection of negation26 using the National
Library of Medicine’s Unified Medical Language
System.27 We have implemented negation detection
through a natural-language processing technique
using a parser that recognizes a large number of
negation and affirmation word forms and concepts in
the vicinity of these forms.

We hope eventually to implement full concept index-
ing with negation on the VAMC CT collection. One
practical problem is that the work cited above has
focused on feasibility rather than efficiency. Negation
indexing of 3 million notes would take about 1 year of
continuous CPU time on a 600 MHz PC using our
existing concept/negation-matching algorithm,
which takes about 1 minute on an 800-word note.
Much of this time represents network bandwidth
latency, because we are indexing on a client CPU that
makes requests to a separate server CPU on which the
UMLS database resides. In any case, we need to con-
sider seriously ways of optimizing both the algorithm
and the hardware infrastructure that supports it.

2. The ability to add thesaurus-driven query term
expansion is potentially attractive. dtSearch supports
external thesauri via several possible mechanisms,
and subsets of the UMLS can be loaded and accessed
for use. Although the term expansion algorithm is
vulnerable to word order, as stated earlier, this
approach still has value for single-word terms and
synonyms, as well as standard acronyms and abbre-
viations. The use of the thesaurus is, of course, sub-
ject to the caveat of polysemy, which is seen with
both abbreviated and nonabbreviated terms.

Conclusions

IR and RDBMS System Integration: Impact on
Query Execution Speed

In our benchmark results, dtSearch and MS-SQL typ-
ically perform better in conjunction than MS-SQL run-
ning by itself. This seems even more surprising con-
sidering that in the former scenario, dtSearch and MS-
SQL communicate through code written by us in an

interpreted language (MS-Access’s Visual Basic for
Applications), in the latter scenario, a single com-
pound SQL statement containing Boolean criteria and
a CONTAINS() function is passed to MS-SQL, with
subsequent execution of the statement running unin-
terrupted. These results might appear counter-intu-
itive, until one considers the several reasons for sub-
optimal performance of the IR add-ons of RDBMSs.

1. Although RDBMS query optimizers have under-
gone considerable evolution, the RDBMS, in the case
of MS-SQL and DB2, merely functions as a passive
broker for IR requests that are passed off to an archi-
tecturally distinct search engine, which returns a set of
matching records to the RDBMS that are filtered after-
ward. Currently, this is no better, from the standpoint
of query optimization, than the “manual” approach
we have taken using a third-party IR component.

2. Installation or purchase of the add-on is typically
optional; therefore, the RDBMS optimizer’s design-
ers sometimes spend little effort in accommodating
an add-on that may not be installed.

3. In cases in which closer coupling between the IR
and RDBMS engines has been attempted, as in Oracle
9i, these efforts are relatively preliminary. Thus,
when the relational part of a mixed relational+ IR
query is determined to return few rows, Oracle 9i
treats CONTAINS as a function call, invoking the IR
engine repeatedly for each row. In reality, it should
not need to call the IR engine more than once.

4. The choice of IR data structure may not be the
most appropriate. Although inverted files,2 which are
used by both Oracle and MS-SQL, are generally used
to implement IR indexes, they allow rapid search
only by term/keyword. They cannot efficiently
answer queries that wish to limit search to a particu-
lar subset of documents, however small that subset
may be. (dtSearch goes beyond traditional inverted
files by storing extra information that permits the use
of File Conditions.) De Vries28 argues that inverted
files are a “black box” to RDBMS optimizers and
advocates structures other than inverted files for sys-
tems that must perform relational + IR search. For
example, one can store IR indexes as relational tables,
which are then indexed using B-trees.29 Such an
approach has been described by Hersh et al.30 A cost-
based RDBMS optimizer can then generate statistics
that use both the term and document ID frequency
distributions to make reasonable decisions.

5. Inverted-file implementations in RDBMSs are pos-
sibly suboptimal. Dynamic Information Systems

35Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

Corporation made a large sale of Omnidex, a “pure”
IR engine that also uses inverted files, to Lawrence
Livermore Labs after reducing the run-time of
queries against a large Oracle database of scientists’
notes from up to 13 minutes with a previous version
of Oracle’s IR engine to less than 4 seconds with
Omnidex.31 For this application, multiple columns in
a table needed to be searched. Oracle’s implementa-
tion of CONTAINS, as stated earlier, does not allow
search across all columns; multiple calls must be
issued, with resulting inefficiency.

We anticipate considerable improvement in this situ-
ation in the future. The gap between “pure” IR ven-
dors and RDBMS vendors has shrunk rapidly in the
past two years, in part through IR software acquisi-
tions by the latter. The “pure” IR vendors will have to
innovate significantly to remain financially viable as
independent entities. In fact, if we had been working,
for example, with MEDLINE documents instead of
clinical text, the differences between the packages
and the reasons for using a “pure” IR package would
have been much less clear-cut.

The Malformed Text Problem with Dictated
Medical Text

The VAMC’s CPRS (DHCP), although eminently capa-
ble, is a legacy system that lacks contemporary indus-
try-standard features such as a word processor with
integrated spell checking of medical terms, and a sig-
nificant proportion of notes in the VAMC CT collec-
tion—notably, progress notes that are intended for
internal use only—reflect its use as a “computer
instead of paper” receptacle. Such notes are little more
than medical shorthand—intelligible to the author but
difficult to compute with. The problem is compound-
ed by obvious typing errors. The list of problems
includes errors in spelling, punctuation, spacing, capi-
talization, and use of abbreviations and acronyms,

some of which are clearly idiosyncratic to the author
and of questionable interpretability to others. A partic-
ularly “pathological” note illustrating all of these
problems is reproduced in Figure 4. It is not certain
that modern software alone will remedy the situation:
it is also necessary for policies regarding the quality of
notes’ content to be formulated and enforced.

There is no way to assess the magnitude of search
failure (i.e., false negatives) because of malformed
text that the search engines simply miss. Based on
our limited testing, the spelling error rate in our col-
lection appears to be around 4%. On searches with
multiple terms and large potential result sets, this
would result in a nontrivial degradation of perform-
ance in terms of recall. If, however, we were dealing
with a collection of MedLine documents, in which
spelling errors and malformed punctuation are rare,
the distinction between the search engines would
have been much less.

Currently, the only way to deal with malformed med-
ical text appears to be through an interactive search-
refinement process; an entirely automated approach
that eliminates human intervention is not conceiv-
able. Although one cannot guarantee 100% recall in
the presence of malformed or misspelled text, soft-
ware that provides robust handling of punctuation
variants, fuzzy search, regular expression capability,
and inspection of a window within the term frequen-
cy index can help significantly. Of note, the only eval-
uated software that supports the last two features, as
well as the most intuitive implementation of fuzzy
search, is dtSearch, a non-RDBMS package.

Implementation Issues with IR and RDBMS
Integration

Existing commercial clinical information systems,
many of which are built on top of RDBMSs, have not

FISK ET AL., Integrated Query of Relational and Textual Data36

here for f/u of panhypopit w/p craniopharungioma surgery many yrs ago.
feels fine. has ahd gabapentin dose se increased recently.notes some
fatigue, not limited to oje time of day. is taking all his meds (cortisone
25/12.5, T4 .15, testo 200 q 2wk, ddavp qnight
pe: not orthostatic, vss
a/p: check tfts, sma7 today. if nl will f/u in pcpc clinic form now on.

F i g u r e 4 . A follow-up note from the VAMC CT collection, reproduced verbatim. Although not typical of the collec-
tion, this note illustrates the practical difficulties in applying IR to medical text: The note has numerous abbreviations
that are idiosyncratic to the author, and indifferent transcription has introduced errors in spelling, punctuation, spacing,
and capitalization.

yet taken full advantage of IR functionality. Although
many of them provide limited text processing for
cross-patient queries, their features fall far short of
what full-fledged IR can offer. In many legacy sys-
tems, such capability has been based on string-pro-
cessing capabilities of the host programming lan-
guage; for example, DEC-RAD 32 (now IDXrad)
relies on the features within the M language.

In general, existing clinical data repositories (CDRs)
support collection of all clinical data, including text,
in a single database but leave the task of devising
means of analyzing textual data up to the reposito-
ry’s computing support team. The variable extent of
IR support by individual RDBMS vendors compli-
cates the task of analyzing/mining textual CDR data.
It is important to know the limitations of individual
RDBMSs for the task at hand, but the choice of
RDBMS is often preordained by what the repository
uses. Switching RDBMS vendors is a delicate and
expensive operation that is also fraught with political
issues, and integration with a relatively low-cost
“pure” IR tool may be more attractive for researchers
performing text mining on a limited budget.

Although it was not particularly difficult for us to
build the system described above, most RDBMS
users do not wish to spend time in software-integra-
tion programming chores. Such programming, as
stated earlier, is partly necessary simply to make the
rich and complex IR features of a package more read-
ily accessible to nonprogramming users. There is no
reason why RDBMS vendors should not provide civ-
ilized user interfaces for integrated relational and tex-
tual query out of the box. Currently, however, the
vendors have just barely managed to get IR function-
ality in place, and even this functionality is some-
times incomplete. The vendors’ present decision to
leave the responsibility of interface-building to third-
party software developers leaves non-SQL experts in
a bind. Commercial generic end-user query tools are
still too rooted in the relational world and do not yet
take advantage of RDBMS IR functionality.

The latter situation exists partly because ISO’s work
on the SQL-99 standard has moved, as it typically
does, at a very leisurely pace, so that it is still in a
draft stage. Meanwhile, the commercial pressure on
RDBMS vendors to introduce IR functionality has
caused them to devise their own divergent approach-
es. The individual IR implementations differ much
more than the “relational” SQL implementations.
Although the respective feature sets differ signifi-
cantly, the syntactic differences are far greater, with

little commonality beyond the word “CONTAINS.”
As such, it is much harder to devise a lingua franca
form of IR-functional SQL analogous to the Open
Database Connectivity (ODBC) standard. (This stan-
dard, originally developed by Microsoft but volun-
tarily relinquished by them to standards bodies such
as ANSI and ISO, was aimed at shielding developers
from the syntactic idiosyncrasies of particular SQL
dialects for standard relational operations, thereby
facilitating software portability greatly.) Conse-
quently, generic-query-tool vendors have shied away
from supporting IR functionality. In addition,
IR/RDBMS applications with a large body of code
are subject to vendor lock-in, because all of the IR-
specific code would need to be rewritten if the
RDBMS vendor was changed.

It may be expecting too much of RDBMS vendors to
give up the advantages of lock-in voluntarily.
RDBMS users will benefit greatly, however, if the IR
component of RDBMS software is made both more
robust to deal with malformed text and more accessi-
ble to nonprogrammers. Doing this needs to be a
high priority in future releases of RDBMS software.

Availability of Software. The software described in
this article will be distributed freely on making a
request to Dr. Nadkarni. While the database storage
component can use any RDBMS that can store text,
the dtSearch engine must be licensed from
dtSearch, Inc.

Bibliography ■

1. Codd E. A Relational Model for Large Shared Data Banks.
Commun ACM 1970; 13(6):377–387.

2. Baeza-Yates R, Ribeiro-Neto B. Modern Information Retrieval.
Harlow, UK, Addison-Wesley Longman, 1999.

3. Sparck Jones K. A statistical interpretation of term specificity
and its application in retrieval. J Document 1972; 28(1):11–21.

4. Salton G, Wu H, Yu CT. Measurement of Term Importance in
Automatic Indexing. J Am Soc Inform Sci 1981; 32(3):175–186.

5. Yount R, Vries J, Councill C. The Medical ARchival System: an
Information Retrieval System Based on Distributed Parallel
Processing. Inform Process Manage 1991; 27(4):1–11.

6. Giuse D, Mickish A. Increasing the availability of the comput-
erized patient record. In AMIA Annual Fall Symposium, 1996.
Philadelphia, Hanley & Belfus, 1996, pp 633–637.

7. Vasanthakumar SR, Callan JP, Croft WB. Integrating
INQUERY with an RDBMS to support text retrieval. Bulletin
of the IEEE Technical Committee on Data Engineering. 1996;
19(1):24–33.

8. Callan J, Croft W, Harding S. The INQUERY Retrieval System.
In Proceedings of the International Conference on Database
and Expert Systems Applications, 1992. 1992, pp 347–356.

9. Melton J, Simon AR, Gray J. SQL 1999: Understanding
Relational Language Components. San Mateo, CA, Morgan
Kaufman, 2001.

37Journal of the American Medical Informatics Association Volume 10 Number 1 Jan / Feb 2003

10. International Standards Organization. SQL Multimedia and
Application Packages. Part 2: Full-Text. Geneva, 2000. Report
Number ISO/IEC JTC 1/SC 32/WG 4.

11. Department of Veterans Affairs. Decentralized Hospital
Computer System Version 2.1: Programmer’s Manual. San
Francisco, Information Systems Center, 1994.

12. Frisse ME. Searching for information in a hypertext medical
handbook. Commun ACM 1988; 31(7):880–886.

13. Wu S, Manber U. Fast text searching allowing errors. Commun
ACM 1992; 35(10):83–91.

14. World Wide Web Consortium. Extensible Markup Language.
2002. http://www.w3.org/XML/Schema. Accessed on
February 20, 2002.

15. World Wide Web Consortium. XML Schema. 2001.
http://www.w3.org/XML/Schema. Accessed on February 20,
2002.

16. World Wide Web Consortium. Guide to the W3C XML
Specification DTD, Version 2.1. 1998. http://www.w3.org/
XML/1998/06/xmlspec-report-v21.htm. Accessed on October
12, 2001.

17. Means WS, Harold ER. XML in a Nutshell: A Desktop Quick
Reference, 2nd ed. Sebastopol, CA, O’Reilly & Associates,
2002.

18. Health Level Seven. HL7 PRA Level 2 Proposal. 2002.
http://www.hl7.org/Special/dotf/docs/Proposal_to_HL7_
on_Mayo_DTD_final.doc. Accessed on June 28, 2002.

19. Staken K. Introduction to native XML databases. 2002. http://
www.xml.com/pub/a/2001/10/31/nativexmldb.html.
Accessed on June 27, 2002.

20. Friedl JEF. Mastering Regular Expressions. Sebastopol, CA,
O’Reilly & Associates, 1997.

21. Levine JR, Mason T, Brown D. lex & yacc. Sebastopol, CA,
O’Reilly & Associates, 1992.

22. Miller GA, Fellbaum C, Tengi R, Wakefield P. Wordnet: A lexi-
cal database for the English Language. 2002. http://www.
cogsci.princeton.edu/~wn/.

23. Bain T. SQL Server Full Text Search Optimizaiton. 2001.
http://www.sql-server-performance.com/tb_search_
optimization.asp. Accessed on February 21, 2002.

24. Masys D. Linking microarray data to the literature [editorial].
Nature Genetics 2001; 27(6):9–10.

25. Nadkarni PM, Chen RS, Brandt CA. UMLS Concept Indexing
for Production Databases: A Feasibility Study. J Am Med
Inform Assoc 2001; 8(1):80–91.

26. Mutalik P, Deshpande A, Nadkarni P. Use of general-purpose
negation detection to augment concept Indexing of medical
documents: a quantitative study using the UMLS. J Am Med
Inform Assoc 2001; 8(6):598–609.

27. Lindberg DAB, Humphreys BL, McCray AT. The Unified
Medical Language System. Meth Inform Med 1993;
32:281–291.

28. de Vries A. Challenging Ubiquitous Inverted Files. In First
DELOS Workshop on Information Seeking, Searching and
Querying in Digital Libraries. Zurich, 2000.

29. Garcia-Molina H, Ullman J, Widom J. Database Systems
Implementation. Upper Saddle River, NJ, Prentice Hall, 2000.

30. Hersh W, Hickam D, Leone T. Words, concepts, or both: opti-
mal indexing units for automated information retrieval. In
Proceedings of the Annual Symposium on Computer
Applications in Medical Care, 1992, 1992, pp 644–648.

31. Dynamic Information Systems Corporation. LLNL Chooses
OMNIDEX to Speed Oracle Full Text Searches. 2002. http://
www.disc.com/prllnl.html. Accessed on February 20, 2002.

32. Niedner C. Use of SQL with an entity-attribute-value data-
base. MUG Q 1991; 21(3):40–45.

FISK ET AL., Integrated Query of Relational and Textual Data38

